Dynamic implicit-solvent coarse-grained models of lipid bilayer membranes: fluctuating hydrodynamics thermostat.

نویسندگان

  • Yaohong Wang
  • Jon Karl Sigurdsson
  • Erik Brandt
  • Paul J Atzberger
چکیده

We introduce a thermostat based on fluctuating hydrodynamics for dynamic simulations of implicit-solvent coarse-grained models of lipid bilayer membranes. We show our fluctuating hydrodynamics approach captures interesting correlations in the dynamics of lipid bilayer membranes that are missing in simulations performed using standard Langevin dynamics. Our momentum conserving thermostat accounts for solvent-mediated momentum transfer by coupling coarse-grained degrees of freedom to stochastic continuum fields that account for both the solvent hydrodynamics and thermal fluctuations. We present both a general framework and specific methods to couple the particle and continuum degrees of freedom in a manner consistent with statistical mechanics and amenable to efficient computational simulation. For self-assembled vesicles, we study the diffusivity of lipids and their spatial correlations. We find the hydrodynamic coupling yields within the bilayer interesting correlations between diffusing lipids that manifest as a vortex-like structure similar to those observed in explicit-solvent simulations. We expect the introduced fluctuating hydrodynamics methods to provide a way to extend implicit-solvent models for use in a wide variety of dynamic studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluctuating Hydrodynamics Methods for Dynamic Coarse-Grained Implicit-Solvent Simulations in LAMMPS

W e introduce a software package integrated with the molecular dynamics software LAMMPS for fluctuating hydrodynamics simulations of fluid-structure interactions subject to thermal fluctuations. The package is motivated to provide dynamic thermostats to extend implicit-solvent coarse-grained (IS-CG) models by incorporating kinetic contributions from the solvent to facilitate their use in a wide...

متن کامل

Large-scale simulations of fluctuating biological membranes.

We present a simple, and physically motivated, coarse-grained model of a lipid bilayer, suited for micron scale computer simulations. Each approximately 25 nm(2) patch of bilayer is represented by a spherical particle. Mimicking forces of hydrophobic association, multiparticle interactions suppress the exposure of each sphere's equator to its implicit solvent surroundings. The requirement of hi...

متن کامل

A Systematically Coarse-Grained Solvent-Free Model for Quantitative Phospholipid Bilayer Simulations

We present an implicit solvent coarse-grained (CG) model for quantitative simulations of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers. The absence of explicit solvent enables membrane simulations on large length and time scales at moderate computational expense. Despite improved computational efficiency, the model preserves chemical specificity and quantitative accuracy. The...

متن کامل

A second generation mesoscopic lipid bilayer model: connections to field-theory descriptions of membranes and nonlocal hydrodynamics.

A new mesoscopic membrane model is developed in order to examine long-wavelength structural and dynamical membrane phenomena. Two different explicit mesoscopic solvent models are employed. The first mesoscopic solvent is denoted the big liquid oscillating blob system, which is parametrized to model water at a coarse-grained level and is motivated by a Langevin-like approach; the resulting membr...

متن کامل

Systematic implicit solvent coarse-graining of bilayer membranes: lipid and phase transferability of the force field.

We study the lipid and phase transferability of our recently developed systematically coarse-grained solvent-free membrane model. The force field was explicitly parameterized to describe a fluid 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayer at 310 K with correct structure and area per lipid, while gaining at least three orders of magnitude in computational efficiency (see Wang and Des...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 88 2  شماره 

صفحات  -

تاریخ انتشار 2013